Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Trends in Food Science & Technology ; 136:169-180, 2023.
Article in English | ScienceDirect | ID: covidwho-2309189

ABSTRACT

Background Growing evidence points to a link between specific fatty acids ingested through the diet and human health. Chain length, saturation degree, and position of double bonds in fatty acids determine their effect in humans. Omega-3 and omega-6 fatty acids have been recognized for their contribution to the prevention and/or treatment of diabetes, cancer, visual impairment, cardiovascular diseases, as well as neurological and musculoskeletal disorders. Scope and approach Humans cannot synthesize these fatty acids in sufficient amounts and need to absorb them through the diet. Oleaginous microalgae constitute a promising, sustainable source of such fatty acids, as they can accumulate up to 85% of lipids on a cell dry weight basis. Key findings and conclusions The present review summarizes the potential of oleaginous microalgae as a convenient, economical, and sustainable source of polyunsaturated fatty acids, and explores their beneficial role in human health. The growing prevalence of cardiovascular diseases and changing dietary preferences are driving the increasing demand for microbial omega-3 fatty acids. Following the COVID-19 pandemic, the importance of a healthy immune system has further strengthened the market for omega-3 fatty acids.

2.
Biomedicines ; 10(8)2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-1957222

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 is an appealing target for the development of antiviral compounds, due to its critical role in the viral life cycle and its high conservation among different coronaviruses and the continuously emerging mutants of SARS-CoV-2. Ferulic acid (FA) is a phytochemical with several health benefits that is abundant in plant biomass and has been used as a basis for the enzymatic or chemical synthesis of derivatives with improved properties, including antiviral activity against a range of viruses. This study tested 54 reported FA derivatives for their inhibitory potential against Mpro by in silico simulations. Molecular docking was performed using Autodock Vina, resulting in comparable or better binding affinities for 14 compounds compared to the known inhibitors N3 and GC376. ADMET analysis showed limited bioavailability but significantly improved the solubility for the enzymatically synthesized hits while better bioavailability and druglikeness properties but higher toxicity were observed for the chemically synthesized ones. MD simulations confirmed the stability of the complexes of the most promising compounds with Mpro, highlighting FA rutinoside and compound e27 as the best candidates from each derivative category.

3.
Comput Struct Biotechnol J ; 20: 1306-1344, 2022.
Article in English | MEDLINE | ID: covidwho-1739656

ABSTRACT

The emergence of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has resulted in a long pandemic, with numerous cases and victims worldwide and enormous consequences on social and economic life. Although vaccinations have proceeded and provide a valuable shield against the virus, the approved drugs are limited and it is crucial that further ways to combat infection are developed, that can also act against potential mutations. The main protease (Mpro) of the virus is an appealing target for the development of inhibitors, due to its importance in the viral life cycle and its high conservation among different coronaviruses. Several compounds have shown inhibitory potential against Mpro, both in silico and in vitro, with few of them also having entered clinical trials. These candidates include: known drugs that have been repurposed, molecules specifically designed based on the natural substrate of the protease or on structural moieties that have shown high binding affinity to the protease active site, as well as naturally derived compounds, either isolated or in plant extracts. The aim of this work is to collectively present the results of research regarding Mpro inhibitors to date, focusing on the function of the compounds founded by in silico simulations and further explored by in vitro and in vivo assays. Creating an extended portfolio of promising compounds that may block viral replication by inhibiting Mpro and by understanding involved structure-activity relationships, could provide a basis for the development of effective solutions against SARS-CoV-2 and future related outbreaks.

SELECTION OF CITATIONS
SEARCH DETAIL